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ABSTRACT

This report describes a study conducted to estimate the torques actingon electrically conducting shells rotating in a magnetic field. The basicelectromagnetic expressions leading to an evaluation of torque are given usingvarious approaches with comparisons for the spherical shell. Application ofthese techniques to cylindrical shells with flat and hemisphere shell ends isdescribed. The torques both slow and alter the direction of the rotating mo-tion, and the resultant decay time constants can be in the order of days.Factors affecting this decay time and influencing shell design are examined.

iii

L4:



ACKNOWLEDGEMENT

The author is most grateful to Dr. K. R. Johnson for his helpful

criticism and review.

iv



TABLE OF CONTENTS

Pag

SECTION I INTRODUCTION 1

HISTORICAL SUMMARY 1
THE SCOPE OF THE PROBLEM 2

SECTION II ANALYTICAL APPROACHES 3

BASIC ANALYTICAL MODEL 3
THE SPHERICAL SHELL 12

SECTION III APPLICATION TO CYLINDER-TYPE SHELLS 24

NON-SPHERICAL SHAPES 24
RIGHT CIRCULAR CYLINDERS 26
HEMISPHERE END CYLINDER 34

SECTION IV DYNAMIC INTERACTIONS AND SHELL DESIGN 40

DECAY TIME FACTORS 40
INERTIA, WEIGHT AND ORBIT LIFE 46

REFERENCES 52

I



SECTION I

INTRODUCTION

HISTORICAL SUMMARY

After the discovery of electromagnetic induction by M. Faraday and

J. Henry (1841) the slowing down effect, which conductors experience when

rotating in a magnetic field, was studied by H. Hertz (1896). 11 Shortly

after, additional analytic treatment was described by R. Gans (1903). [2, 3]

These results for spherical shells also appear in the relatively modern

text by Smythe. 
[ 41

Effort during the first half of this century concentrated on generator

and motor design. While studies in electromagnetism, terrestial magnetism,

and mechanics appeared in various texts, a rekindling of interest in the

basic questions concerning the interaction of conducting bodies moving in

magnetic fields awaited the arrival of the space age around 1955. Then a

number of investigations, for example, Rosenstock, Vinti, and Zunov'15, 6,

considered the problem in terms of a spinning satellite moving in an earth

orbit. Yet until the present, very little was done analytically on other than

a few regularly shaped bodies such as spheres, cylinders, and prolate

spheroids. 
[ 8, 9, 10]

A good deal of effort has been given to using observed satellite data to

arrive empirically at decay and motion perturbation estimates. n12]

this regard, a rather comprehensive treatmet recently appeared by Yu. 13]

N> *Numbers in brackets refer to References cited at the end of the report.
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Finally, a relatively large effort also has been given to utilizing the

interaction of the magnetosphere with on-board magnetic sources in order

to effect attitude control. [ 14, 15] In dealing with objects in orbit, the inter-

action of the magnetosphere need not only be with the induced eddy currents.

It may also react with existing current or magnetic sources on the object as

well as with the magnetic field induced. There may also be reactions of

ambient electric fields with induced electric fields.

THE SCOPE OF THE PROBLEM

When a conductor and a magnetic field undergo relative motion*, an

electromotive force is developed in the conductor. If closed conductng

paths are present through which a change of magnetic flux occurs, then

eddy currents flow in the conductor. The further interaction of this current

flow with the magnetic field produces torques which in general both dissipate

the rotational energy and cause an orientation change in the rotation axis.

In addition, the currents if sufficiently strong produce a magnetic field which

can appreciably perturb the background magnetic field.

The analytic effort of interest here is that concerned with deriving

expressions for the resulting torques, and also with the decay time con-

stants which result, rather than the over-all motion problem to account for

all magnetic torque components and the resulting motion about the center of

mass as the object moves in orbit.

It will also be our concern here to deal with modified cylinder shapes

and to discuss the design problem for realizing desired motion lifetimes.

*This includes the case of a stationary conductor and a magnetic field varying

in time-space.
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SECTION II

ANALYTICAL APPROACHES

BASIC ANALYTICAL MODEL

To provide a background for the methods of calculating eddy current

torques, we begin this section by describing the basic electromagnetic and

mechanics equations appropriate to establishing mathematical models. The

following symbols apply to the equations given in the report:

Electromagnetics Mechanics - Geometry

= electromotive force M = mass

E = electric intensity vector I = moment of inertia

H = magnetic intensity vector w = angular velocity vector

D = electric flux vector V = velocity vector

B = magnetic flux vector r = distance from center of mass

4) = flux linkage f = force vector

p = charge density T = torque vector

r = current density vector I = path length on object

a = conductivity

c = emissivity

p = magnetic permeability

c = speed of light

Using a Gaussian system of units, the applicable basic equations are:

- =

c t t (1)L (V xH)]+ pV (2)

3
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V x H = i+I a_c c at (3)

V = w x r (4)

Equations (1) to (3) apply whether measured in an inertial frame at rest with

the laboratory, or fixed with respect to an inertial observer instantaneously

at rest with respect to a point in the moving object. For an inertial frame

at rest for some point on the object, the following constitutive equations

apply:

D, = C E, (5)

Bt = P HI' (6)

Using unprimed quantities to apply for a fixed frame and taking
2p = 1, E - 1 (for a metal) and (V/c) <<I we get, inside the metal, for

our purposes
[ 6]

D E (7)

B H (8)

Also for (V/c)2 << 1

= + pV (9)

,= + (V x )'/c (10)

In addition, the contribution of the convection currents p V in regard

to producing torque can be neglected. Their elimination in this respect can

be justified both due to the relatively small contribution to 1 and also a

possible cancellation for torque due to geometrical symmetry. The only

effect, which is very small, is a turning torque. [ 6] However, in general

we take
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i=rf + pV (11)

rE+ (V x )](12)

In respect to the discussion in the introduction, it is interesting to

recall the two mechanisms for inducing an electromotive force g about a

conducting path S. Using p = 1 we have

= ' di + L +F ( di
S

c d0tj = 0+ '5T B=constant](3
1 ft
c dt (13)

where dI,/dt is the rate of change of flux linking path S.

We are concerned here with (4l/8 t) B = constant due to motion as

well as (a4/8 t) V = 0 if 3H/a t j 0, that is, if the background magnetic

field is disturbed.

If the background magnetic field is fixed and the eddy currents do not

appreciatively alter it, then we may take OH/8 t = 0 in Equation (1). This

allows V x E = 0 which results in a convenient approach for the spherical

shell described under "The Spherical Shell."

lhe angular motion w can be resolved as

w~1 1 + 1  (14)
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where

is parallel to H

W, is normal to

The effect of w[I is to cause charge separation toward the conductor

boundary, that is radially from the rotation axis, resulting in an electric

field E which balances out the originally induced electric field caused by

the motion. In other words with OH/at = 0 and takingV 11 =w-j x r then

= E + =0 (15)

Using Equation (12) then gives

0 (16)

With respect to the fixed frame the zero torque result also obtains as

can be seen from the force expression using Equation (11) for I as follows

= p(E + V x PTI) + a (E + V x PI) = 0 (17)

from Equation (15).

This is equivalent to saying that under 'W action, no closed i loops

occur. Here V i I / 0 and amounts to 3 D/8 t j 0. The effect is

referred to as electrostatic shielding. For w the charge separation

dissipates rapidly along closed current loops. This in essence amounts to

assuming 8 D/a t = 0 , since using

V • =47rp (18)

6
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implies no charge build-up. More exactly, from Equations (3) and (18) with
D',we have

V"i' V 1 PV = _ ap

4r a t a t (19)

The rates 3 p'/ t are electromagnetic and so much more rapid than

the motion rate o. Thus, taking for the transient i' = a E', Equation (18)

allows simply

apt _ 47rap'

at 6 (20)

that is

pt= Pt/e T = E/4r 9 (21)

For example, T for aluminum - 0. 2 x 10- 18 sec. Thus, for a conductor

such as aluminum, the time constant T is extremely short.

Hence, any tendency for charge build-up is rapidly dissipated and in

the steady state (w - constant) causes no opposing electric field as in

Equation (16). Notice from Equation (1) that when a Rl/a t j 0 , an electric
field can be developed even though no charge build-up occurs. Thus we may
summarize by stating that an electric field is produced to oppose that caused

by the motion (V x li/c) if

(1) 1 causes 3 R-/a t # 0 (i. e., changes in the total magnetic field).

(2) i causes a build-up of charge.

7



\

In the case of only w present, case (2), as we have noted, results in

= 0 and so no torque is produced. * In such a case the opposing electric

field is generated by the charge build-up.

Considering Equations (3) and (11) leads to

V x(E + x + 8 (22)
C Ccat c

We see that D/a t = 0 requires

4irc_. a 8 BE (23)

c c t

or for harmonic time variation

/f >>

a condition satisfied for good conductors and frequencies up to 1010 mc.

In this discussion the condition is valid and results in the so-called quasi-

stationary case with no displacement current.

Taking the case of Equation (22) we have

V2 2 Ot 2 (V x (V x H) (24)
c c

We consider E = E + E2 such that we associate

S E + x I 0 (25)

*Unless GY is strictly constant, current transients occur. The torques

developed from the resulting field disturbances are negligible, however,
with respect to the torque due to the steady state Wj_ motion.

8
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and

v 2  = U pV xE (26)

For example, an aluminum object of characteristic length R 125 cm and

with V on its surface between 0 and about 12 cm/see (corresponding to

- 2 r/30 rad/sec), has V x (V x H/c) - VH/cf and

c/4fa p V2 H c eH/4rapf with equal order effects on 81/8 t. Then

and E,. should be comparable where we have associated E with the motion
2- 1

V x H/c and E2 with V H, that is the effect of the presence of the body

in disturbing the background magnetic field.

We shall conclude this discussion by developing the basic torque

expressions. *

From Equations (4) and (11),

i u C+ r) x T1J (27)

and

dT = r x df = x (i x H) dV] (28)

where the differential torque dT is developed from the force occurring

on a differential volume. Then with p = 1

" *By neglecting the p V term in I we are in essence taking E to be effec-

L tively E2 in E = E + E2 where E is due to the component of w

parallel to H, i. e., the component due to charge build-up.

9
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3= d;= x or xn + x F d V
T o Vol (29)

As noted previously, for w c T = 0 (no flux linkage). Then expanding

(w x r) x H and using & I x H = 0, we get

0' c o H) r -1 -r -x + E x H dV = 0

Vol (30)_

Since r can have arbitrary orientation with respect to H

E"for C = Wil (31)

which is an alternate form of Equation (15).

Let

H=H + HI I + l(32)

where

Hil is the component of H parallel to co

H I is the component of H normal to co

Similarly let

_ _=__ _ 
+  I1 (33)

It is to be recalled (see Equation (17)) that the E of Equation (31) is due to

charge build-up. We have neglected the p V term in the torque expression
here since it does not effectively contribute.

10
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where

c (34)

from Equation (31) using to stand for magnitude and let

EE11  (35)

We note ifw = w, then (w H) = 0 so that E = E

Then,

Vol (36)

r x ' x x I]dV ; - r xFH ~O x RdV

Vol Voi

We can write Equation (36) as

T=- x(t x R)dV + 2 TC 0

Vol (37)

where

0 -0 2 (- x H) x y ji r) rdV
2c Vol (38)

is an expression for the complete torque on a sphere shape if V x E = 0

is assumed as well as aD/a t = 0.

U 11
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The Spherical Shell

We begin the discussion using an approximate but convenient method
based on ii [ 6]

based on Vinti. [ This method also gives insight into torques for other

shapes discussed in Section III.

The assumption made is that V x E = 0. This amounts to saying

that the magnetic field is not appreciably perturbed by the rotating conducting

sphere shell. We define the inner radius of the shell by a and the outer

radius by b, and call the thickness h = b - a. As noted previously the

torque is given by

T= x x ) - (39)

Vol

*with V x E = 0 (i e OH/ft = 0) then

V x -V X (V x 1)(
c (40)

For F1 constant and uniform and w constant, we find expanding the curl

of the cross product,

VX ( x H) = -Hx W (41)

Then

Vxi=- (co xli) (42)

or

O (w x H) x r 4 V (43)

*The implication is that E = Vi with ' a scalar function, since

V x (Vi) = 0.

12



We note that V • = 0 using aD/Dt = 0, and with Equation (43)

and [(x i x I ] = 0, then

V2 'P= 0 (44)

that is, € satisfies Laplace's equation.

Considering the surface boundary conditions due to continuity of the

normal 1 component

=_ V q = 0 and the geometrical radial symmetryaTi surface

applicable with the sphere, there results Vp = 0 or

-= - (co X H) x r2c (45)

We then obtain from Equation (39) by expanding the triple product and

simplifying results in a single term,

T= To - 2c 2

2c co -( x H) x I [H r (46)Vol (46)

Now for shell sphere taking,* r = x 1 i + x2 i2 + x3 i3

*
The i1 ; i = 1, 2, 3 are unit vectors in the 3 coordinate directions.

Equations (47)come from x x dV 0, i / j and

Vol

b

x. dV Sr2dV =4(b - a5) i= 1, 2, 3.

Vol a

13
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rdV =( 'X.x.i. i".dVVol ,jl

'1 2b 2 3~(t~tt+t (47)

With I = 1 1  + H2I +ii 3

1i 2 2 3 3

= 1-" - a3i id V (b a'
Vol

Thus

0 [bxM (48)

where we may take

M = magnetic moment of the sphere shell.

We define the constant factor

2 1 a 2
k -2r b5  a5/_

15c 1) 4pc

21r cra 4 h

3c 2  (49)

where I is the moment of inertia of sphere shell, p = uniform mass density

and* for h/a << 1,

In general for h/a << 1 , bn  an an - (nh) or b (nh).

14



b 5 a 5 )  5a4h

b 5b 4h (50)

Thus

[ (51)

We may resolve T into components parallel and orthogonal to w denoted
0

respectively as T and T (D for drag, T for turning).
OD oT

Then

T + Af o x (52)

Substituting from Equation (51) and expanding the triple cross product

fi (2 T)2] 1
TOD k[ ( .H (53)

and

kO cokw , - x (Ri X tj kw IFl~
(54),

with Equation (49) it is to be noted that Equation (51) becomes

T D I'a(b5 a)
T 15c (55)

Equation (55) is now describe.& using an alternate approach which is less

restrictive and applicable to other object shapes.

Let. us consider the following geometry for the solid sphere of radius b.

15
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Let (x, y, z be a fixed-in-space coordinate system.

{ , h, Z} be a fixed-in-the-body coordinate system.

H H Hi x

z

We now reformulate the model of a spinning shell in a fixed field to a shell

in a field which changes in time to correspond to the relative motion, since

torque depends only on relative motion. We note also that even though H

is taken normal to w in the diagram so as to get only a damping torque, the

model allows a general orientation between H and w as in the previous

calculation for torque. For the motion assumed we can take Z = z. Then

= (HxCOS w0)

I, = - (Hx sin w t)'

= o (56)

so that H = H + H

16
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In complex form these become

H =H e H =ReH

-i(t:
H =-iH e H = ReH

71 X 77 7

z (57)

The method now uses the formulation of the magnetic moment based

on Landau and Tifshitz. [16]

Let M = total magnetic moment acquired by a conductor in a mag-

netic field. In general, the torque on the conductor in the magnetic field

H is then

T=MxH (58)

which compares to Equation (48) for the sphere. We take

3 3
_: N 7 Mt , H =' H j

i1 j =1 (59)

Then M. can be written as1

M. = Vai(o)H
1 ik () Hk (60)

where

V = volume of the conductor

= angular rate of conductor with respect to field direction

17
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Va i (w) =magnetic polarizability, a tensor, wvhere ai

is symmetric and depends on the body shape

and orientation of the external field but not on

the volume.

For the sphere (solid) ae is a scalar* a 6 ikand we have

R =V CHT (61)

with a = a1 + i a2. For the sphere, the same a applies whether the

HI field is H or H so that

M =VH (a9 CosWt +aC sin w t)

M~ =7 VH x(alsinot + a2 coscwt) (62)

M =0
z

Using

M M cos wt - M sinwct

M = M sin wt + M cos wt (63)
y 7

*6 ikis the Kronecker dtetta. For the sphere the polarizability per unit

volume isat=x a -i 3- [ 1 -_ __L + 3cot bkl where

1+ '02 T Lr b 2 k 2  bkJ

k 6 and 6 (27raw) 1/2 is the skin depth. it is to be noted also

that since at is complex, a retardation exists between R and H and so

non-colinearity and non-zero torque.1



We get

M = VH a
x x 1

M = VH a 2y

M = 0 (64)

Then with H = H i and Equation (61),Xx

T =0
x

T -0
y

T =-M H = -VH 2 a
z y x x 2 (65)

If the skindepth* 6 >> h then a2  b so that with V -r0b3 ,

2 23

3 22 2 25-
4-r b3H b o col 2ir H ab5W

T 30e2 15c 2  (66)

To approximate the thin spherical shell when h/a << 1, we subtract

the result for T at a , the inner radius, from the result T at b, thez z

outer radius. This gives for the spherical shell from Equation (66),

z 15e2 x (67)

For a shell 6 >> h (the shell thickness).

19
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Equation (67) agrees exactly with Equation (49) since in our case

H =H = Hi

The form given by Equation (67) thus agrees with Equation (55) which

was derived neglecting the effect of 0 H/O t j 0 , if present.

For a spherical shell thick enough and with the w 1 H geometry, the

assumption 8 H/D t = 0 is reasonable. The formula for a very thin shell

given in Smyth 41 includes the a H/a t effect and restricts H normal to W-.

Converting this result to our terminology gives,

T - 1

21+ C2 W (68)

where

C= (2/3) 7M 2 H 2ab4 h

2b2a 2h2

_ p b ah
2 9

For us p = 1 and taking 0HA t = 0 is to take C = 0. Using

5  5 H2 (b 5  a 5 )
-a thengivesC , = - Applying this to

b - 5h thng ±sC 15

the Gaussian system of units then produces agreement with Equations (55)

and (67).

We close this section by noting that a recent investigation by Halverson

,and Cohen[ 8 ]has included the e-neralization of consider ing both rotation

with W and B arbitrarily related as in Equations (52) or (59) as well as

a jHI j 0 as in Equation (68).

The model of using the assumed equivalence of a time-varying feld and

fixed conductor for the moving conductor in a f.xed field is applied.

20
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Using the vector potential A (see References (4) and (8)) where

v x

T then

2- 4-rpa d A
c dt (70)

and
' dA

41r d t (71)

We note Equation (70) also applies to E, ti and I

The torque given by Equation (29) or (39) can be written in the equivalent

form

T - $ rx x ( x dV

Vol (72)

Solving Equation (70) with the appropriate boundary conditions for the

sphere shell results in a general formula with rather complicated coeffi-

cients. 8  For a good conductor or with w low [ with q - 0 , see

Reference (8)] or a good dielectric or high w (q - cc) , the form of the
A

coefficients simplify, with W = w k and " (Z, 9) a , to give for

q < I (q - 0)

3,rO 2q4( P 5 7) sin 2

90 (1[P IP+)+ 2.2

5)2

Tft

(73)

!21



for q > 100(q -- c)

T 3v b 3B2  [ 1 2 + ( _ 2

+ 22 /
- 2 sii C1q q (74)

where

q b (2 P) /2, P W- , T = resistance/unit length

p = b/a

For a thin shell p - 1, so that taking h = b - a with surface

resistivity = /h remaining finite, then with q arbitrary,

-rwb 4B42 f,- -t ) si (e+2na)
92 + p w b (75)

For B Co (i.e., a = 7r/2)

T= 6r B2t 224 2267 2 2awbh (76)

9t 2 + p2& b2  9 2 b22 h
2

Equation (67b) is the form given by Equation (68) with 9 = 1/ah

The I , j , and k components of T in Equation (73) , (74) or (75) are

-C1 sin 2a , C 2 C1 sin a respectively. These forms also

apply, aside from the specific values for C1 and C2 , for the general case

with no restrictions on q or h.

22



We see, as before, that

(1) T = 0 if a = 0(i.e., c and B are parallel)

(2) Vie I and J components of T cause w to precess about B.

The situation in (2) is consistent with the simplified form of T oTin

the H, direction given in Equation (54). Except for perfect conductors,

the vector co then precesses in the steady state until it becomes, for fixed

B colinear with B. As co approaches B, w energy is transferred to

-e, I, which is dropping due to damping of co such that wo remains constant

for constant B.

23
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SECTION III

APPLICATION TO CYLINDER-TYPE SHELLS

NON-SPHERICAL SHAPES

As noted the torque, in general, can be given as

T rx <+E x H1 dV

Vol (77)

where the effect of convection currents can usually be neglected. Expanding

the triple product then gives

¥= r x +r ( I H dV- x

Vol Vol

x dV (78)

Using Equations (33) and (34) then allows for T, in general, as

c r x (-E, x H0dV+2T

Vol (79)

where

;to xf R) H" (Iir dV

2c Vol (80)

In the case of a sphere shell T = T which implies
0

- r x x= - T

Vol

24



To say this in general would be to imply that Vp = 0 in

T= T ,x x x r + V(81)

which is not true for non-spherical body geometries.

Thus, approaches using equations such as Equation (70) which take

account of the field and currents internal to non-spherical geometries must

be used. For cylinder shapes T" values can result which do not differ

greatly from To . In addition, the dyadic form C r r dV in T is usefulI 0 0
for comparing different cylinder end configurations. (See Equation (83) and

section entitled "Hemisphere End Cylinder".)

We also note that if conditions (1) and (2) (see page 9) do not hold, then

as also noted in Reference (17), we may drop E and take

* = c- (x r) x H (82)

To do this would give for co. H ,

T=2T (83)
0

which in the sphere case, at least, is in error by a factor of 2.

Thus, although V x E = 0 is assumed from 8HI/St = 0 to get

T = T for the sphere, charge movement etc. does not allow dropping ofO0

the E itself.

Finally when W = 0) then T = 0 . With T = 0 in general for0

such orientation, then we might use the approximation

T = KT 0 (84)

since E= and E1 are not in general zero.

25
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RIGHT CIRCULAR CYLINDERS

Initially in order to lify the field equations, a spin axis w normal

to H is assumed. This a, LI ws comparison with more complicated

analysis. Here the assumptions of both zero displacement current 8)/at = 0

and nonperturbed field 3H/ft = V x E = 0 are made.

Considering the field induced in a current path moving with the body

we write from Equation (10)

5 +v x (85)

With V x E = u aH/8t 0, V the component of V normal to H, I

the cylinder length at direction f , and neglecting end effects, there results

_H V(

- rw sin a 2 (86)
C

where a = (V, H)

For a path length 2 , the voltage & becomes*

L H r w sina (87)c

An approach similar to the one outlined here can be based on using
V Voltage = do/dt ; = fluxc linkage.
P = power dissipated = -V 2/R ; R = resistance of induced current paths.
T = torque = 11w dV/dt = 11w P.

Such an approach can be used to develop torque values for tumbling cylinder
However, such methods, although simple to construct, can be in error (e. g.,
page 30) since they do not account completely for the induced current paths and
boundary conditions as do methods based on Maxwell field equations.
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By calculating the path resistance next, a value of i and then T is obtained

using

T= - r x Ix H) dVc

With a and b the inside and outside radii respectively for a cylinder of

length 2 , Hooper [ 9] using this approach gives, with conducting end plates

(in MKS units),

2 H 2 2o(b4 -a 4) _S4(f + a + b) (88)

or

T2 H 2 cb 3

(2 + a + b) (89)

using h = b - a and the footnote on page 14, and without end plates,

2 2 2 4c~ -a)T ir/ p b4 I4 ,(

4[P + ir/4 (a + b)] (90)

or as in (89)

2i2 2 3
T H f r1L wcbh

2 + -r/4 (a + b) (91)

Similar calculations on the sphere shell give

32 27- H 2c (b 5  a5 )F5 3-(92)

which agrees very closely with Equation (67).

H,)wever, Smythe's analysis (Reference 4) accounting for EHI/at j 0

gives for w, the spinning cylinder shell without end plates, H1 w , and

h small
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= 4irw a h b B2
T 22 22 2 (93)

4 +w p b h ao93

Neglecting 9H/Dt reduces Equation (93) to (in MKS units)

r=- wahb3 B 2 (94)

which agrees with (91) if the term ir /a (a + b) is neglected in the denomi-

nator. Since (94) agrees with a third calculation given below, it appears that

the calculation of the resistance path in Reference 9 may be in error.

We now proceed to a calculation similar to that used on the sphere

starting with Equation (56). This will be done for a tumbling (as well as

spinning) cylinder. In both cases w I H still applies.

We view the geometry as shown

Y

II

For a solid cylinder the magnetic moment per unit length is

1¥1 = V a n

where the tensor a ik reduces to'the scalar a 6 ik

a = a, + ia
A2 2
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Equations (56) through (60) still apply. Now, however, we deal with two

values of a, say aI and a", where a' applies when H is orthogonal

to the cylinder axis and a" when H is parallel to this axis.

jFollowing as before, we now obtain

M VRe (a' H) = VRe 1 ' +i C2 ') (Hxe At)]

= VH x a cos W t + a 2 ' sin ct (9)

M = VRe (a"H) =VRe[(VIi + ia 2 t) (-iHe-it)

= Vt - 1"sin cot + a 2 llcos cot)

VHX (-ci' sin cot + ai t cos cot)
2 1 o2o (96)

using, in the M equation, the fact that a" = a'/2 (see Referenme 16).

With Equation (63) we have
.2I- +1'

M =vl~a i~i~sincot)+ ,sin wttcos cot j(98)
y x 12 2992

y= Hx ai sin wttcost + a 2 ' -cos
2  2)w(9

M =0 (100)

29



I

Now the torque per unit length gives

T x HI M ( H - M H) ' + (M H M MH)yz z Y) z X )y

+ IM H - M H)x y y x

- Ti + T i' + T
xx yy z z (101)

so that

T = 0; (MHz H z 0) (102)

T y= 0; (M H 0) (103)

T = -MyH; \(Y 0 (104)

where
H=Hi

X X

Thus using* 422 b2
a ' b a -COb a CO

al' - r 2 '
4 ' 2 T

6c 4c

The exact value has a' 1 2J (k a) k + 1 i5

2-,r kb (kb) /U - 6

When the skin depth 6 >> b or for the shell, then the approximate values
for a' I e2 used above apply.
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T2 [ r w sinwtcoswt
Tz  MyHx = -VH6c4 2

2 2
b" Cos W tc

22)]
('X~~b2~w )[ b:c sin cwt coswt+( os t)

4c 3c2

cos 2t b2aw sin 2w

iH2 Y [ 4/ c2. w
6c (105)

Considering the average torque per period gives for the bracket contents,

21r

dO = 3/4; 0 = w t

0

so that

2 4
3-A H b owAvg Tr =

z 2
16c (106)

Doing the same for a cylinder of radius a and subtracting* for the shell

of thickness h = (b - a) << a gives the average torque for I ength f

(Tumbling)

AvgT 3-r H2 w 2\b - a4) 3 H2 owb3f
16c 4c 2  (107)

*Since v 0 / 0 for the cylinder, as it was for the sphere, the result now

is an approximation.
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Doing a similar calculation for a spinning cylinder shell where only a'

applies gives

M VH a ' (108)x x1

M =VHx a2' (109)

M 0 (110)
Z

T =-MH (11)
z yx

The steady state nature of the torque is revealed by Equations (108) through

(111) and gives per unit length.

(Spinning)

T~ ~~ ~ 2-H = ir
z MyHx = b2 I Hx  4c2  (112)

Accounting for a thin shell of thickness h = (b - a) leads after subtraction

to the torque for a cylinder of length R,

r o b a - a4 )H2

2
4c

- = cbo ab3H 2
c (113)

C 2
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Equation (113) agrees exactly with (94) based on Smythe 43 where in.(113)

= 1 is assumed*

Only a 2 I appears in the average torque expression of Equation (107)

for a tumbling cylinder shell and in the torque expression of Equation (113)

for a spinning cylinder shell. We now examine for a possible case of

interest the effect of using the exact value of a' as given in the footnote on

page 30 as opposed to the approximate value (for 6 >> b) also given on the

bottom of page 30 and used in Equations (107) and (113).

For a solid aluminum cylinder with w = 2r/100 and of radius

b = 0.625m

b 2  w 0.136
a 2(approx) -

2 2 2-r4c

a ' (exact) 0.128
2 21r

Similarly for a solid cylinder of radius a = 0. 615m,

_0. 132
a2 ' (approx) = 2 ,

a 2I (exact) = 0.127
221r

The possibility of agreement appears plausible in the spinning case where
with o I H a steady state condition might result so that the effect on the

currents from V 0 cancels motion effects because of symmetry. The
tumbling case affords less possibility for steady state conditions.
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This amounts to a reduction of torque in each case by 4 percent, so that

using a 2 ' (exact) in the shell cases gives

revised Avg T for tumbling cylinder shell = 0. 96 (Avg T of

Equation (107))

revised T for spinning cylinder shell = 0.96 (T of Equation (113)).

Finally with the shell thin h << a, the Bessel function form for a'

provides an approximation using the subtraction approach employed above.

The agreement in certain situations as we have noted, with torque values

calculated in alternate ways, e. g. using Smythe values, supports this

approach, in at least a limited application.

HFMISPHERE END CYLINDER

Rather than open or flat ends it may be useful for radar applications,

for example, to have rounded ends. To provide some insight on the effect

of such rounding, we choose to consider cylinder shells capped with hemi-

sphere shells. To relate the relative contribution of such ends to the torque

we turn to the dyadic calculation in the torque formulation expressed by T0

(see Section III).

a) Open End Cylinder Shell C
0

i F dV = I k x 1dV x=

Vol 2, =1 x 2 
= y

X3 = z
(114)
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r-(2 2) 1/2

Now
. /2 b 21r

Vol Vol -1/2 a 0

4 0

jl

f( /2 1/27

2 22 b 2)i3

2 dV= z 2d dVd (b a f B(cs)2dd

Vol -2/2 a 0(16

Vo / (11)
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and

r (k d V)C A 0 + ) + B 0
(119)

Note with respect to the direction iC we may call HT = I' so that

A (flx + BH 0 1 A + BH) o 010 11 (120)

b) Hemisphere Capped Cylinder Shell C1

We now apply Equation (114) to the object shown below

x

Now

x xXj dV 0; i j

Vol (121)

2 2 1 Q2( 2 c -,r 5 5 )x xdV 3 J? iP P d -5 \b -a Ai~
Vol Vol Vol

.2 dV

Vol (122)
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where

w(~ 2  2 -2) 1/2
2 + +z z z :/2

A [ sgn (z) f/2+ dV
Vol each Vol

hemisphere

-4Vol(sphere) + b 5 _ 5 )

+ 22 zdV

Hemisphere

47: 3 3) f a 2 U(4  4 a)(~a)Bi

(123)

In Equation (123) use has been made of

$zdV = 2 f pcosOdV

Hemisphere Quadrant

length of d V
/2 bslice 

for quadrant,

2 'y y p3lr 
psin 0

24o0b sine d0dpd

(rpsin 0) pd 0dp

1 b

2 2ir y uduS p3 dp ; u= sin 0= i/(b 4  a a4 )
0 a
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Thus

\Vol/ C1  ( z (124)

and as in Equation (120), we again may write,

A(H + H\ + BH = A H 1 + B1 H iu xB z 1  B (125)

Thus wemayuse (A ° , B) and (A 1 , B1) to compare Lhe relative effect

on torque of the hemisphere shell caps.

We choose a possible case of interest to compare (T)C0 and (T)c 1

For a tumbling cylinder C or C. with co H ,then over a rotation

period with H fixed, Avg T is proportional to A + B for C and

proportional to A1 + B1 for C1 since To is proportional to Ak IH 1
2

+ BkIHII12 ; k = 0, land 1H11 - Hcoswt, 1H111 I Hsin wt.

CASE I

Considering in particular I = 3m, b = 0. 625m and h = 0. Olm we get

B

A + B - 0 + B = 1.25B ; for C
0 0 4 o 0 0

A + B = 1.25A + 2.7B "1 3 B ; forC 1  (126)A1 1 o 0 0 16

This gives a factor increase of about 2.4 for C1 over C0
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CASE II

Again for b = 0.625m, h = 0.01m and now 2 = 2.4m

B

A + B - + B = 1.33B ; for C
o 0 3 0 0 0

A + B = 1.3A + 3.2B 3.6Bo;forC11 0 0 0 1 (127)

Thi9 gives a factor increase of about 2. 7 for C1 over C . Of -,urse the

torque also is proportional directly to 2 and the overall length of the C1

cylinders is larger so that, although the effect of the ends being capped is

high (factor of 2 to 3 increase in torque for the dimensions used), a rough

comparison between cases 1 and 2 gives

T(case2) 2.7 f2 -0.t- -= 0. 9
T(case 1) -2.4 f(128)

Thus, as the length of the cylinder section drops, the curved end caps

contribute an increasing percentage to the torque. However, the reduction

in cylinder section length affects the torque so as to result in about the same

torque for two capped cylinders of the dimensions considered.

L
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SECTION lV

DYNAMIC INTERACTIONS AND SHELL DESIGN

DECAY IRAE FACTORS

As noted in the introduction, we are not concerned here directly with

the time continuous motion of the body interacting with the eddy current

torques which both oppose w (decay torque coinpo:.snt) and alter the

orientation of w- (turning torque component).

We concentrate only on the decay effects and assume the W to H

orientation fixed in order to assess in a conservative manner the time

constants associated with decay. The basic dynamic equation relating decay

torque TD to acceleration d/dt =W is

T = I W (129)

where I is the moment of inertia about the rotation axis in the c direction.

We shall consider with 'IH (. e. H = H1 )

TD ; k = 1, 2, 3, 4

k

where

k = 1: Spinning Spherical Shell

k = 2: Spinning Cylindrical Shell (open-ended)

k = 3: Tumbling Cylindrical Shell (open-ended)

k = 4: Tumbling Cylhidrical Shell with Hemisphere Shell Ends
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For k= 1

From Equations (55) or (67) with 0H/8 t = 0 assumed,

- _ 27 H 2  b 4 h
TD1 3c 2  (130)

or more exactly with 8H/8 t = V x E 0 , from Equation (68) or (76)

(i. e., at higher initial w values)

j 2 4-
T 21r H2 ab 4

3C2[1 + b a h CO2 ]

Equation (131) leads to

dw I
dt 1 + c2 W2  (132)

where

24
2. H cb h = b2 2h2

cl2 c 2 b h /9.
3c

Then

K( +I c 2I ) dco= - C dt (133)

Taking w(t = 0) = co ,we get

/2 2\

In (w ) + (2 2 ) - 1

)) / 1 (134)
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or eki[ 2 1 -kt
o (W/io) e  L ( o/w0 ) - e -e (135)

with
2

c COo  cI

k1 2 ' k2

For k << 1 (i.e., for large w )

wlw t e-k 2 t (136)

So that the exponential decay time constant becomes

=I 13c'71 =1/k 2  c 2_
2 1  2-H b" (137)

The same result comes directly from Equation (130) (the DH/ t = 0 torque

calculation).

Thus it is seen that T is proportional to I and inversely proportional
2

to H and h. This will hold as well for all T
k . For example with alumi-

num of spherical shell thickness h = . 001m.

2
I = 3.4kg. m , b = 0.29m, H = 0.3 oersted* , (see reference (7))

T1 70 days.

*Ve take this to be representative value of earth magnetic intensity at

about 300 nautical miles.
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For k= 2

From Equations (94) 3r (113)

- 2 32 H 2, TD = - 'r (Tb 3 ih
2 (138)

C

or more exactly from Equation (93)

Aside from new values for c 1 and c 2 , Equations (138) and (139) correspond

exactly in form to Equations (130) and (131) respectively.

~Then from Equation (137)

2

2 = a b h (140)

For k = 3m, H = 0. 3oersted, b = 0. 625m, h = 0.0lm (1lcm) and

aluminum together with an imposed value I = 75 kg - m (this value cannot

be attained with the dimensions given using only aluminum, see following

section).

T 2 :-- 1. 2 days
irH 3cR -b 1 h 1 (140)

be attaine with theasisinttos given using nl tamm ,e ll

section)
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For k =3

From Equation (107) we obtain as an average time constant

I 16c 2  1 4c2
T3

3r (b 4 - a4 )I 3-rH a b f h (142)

For the same physical constants and dimensions as used in k = 2 we get

T 3 1.6days.
3

Fork = 4

From Equations (107) and (129) we may write

I - c dt (143)

Then

4 ( )k= 4 \(3) (1 ) 3  (144)

From Equations (84), (126), and (12" we write

TD k = 4 k 3 (145)

where, for the dimensions of interest,

(c 1
N -k = 4K- x 2.5

1Uk= 3

(146)
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For tumbling we consider I as follows for k = 3

I xx z 2 di + y 2 dm

Vol Vol
Za

Y

"1 2/2 b 27r

C 3 3 3 L2 + (r cos 0) 2 r d 0drdz (147)
-R/2 a 0

2b

where y is the mass density and with volume element shown by

z

dzI A
I -/p

k = = I = 7 -- - a +~ -y

F-F

Tnoa

Y [ 3 +2 B0 ] (148)[b
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In a similar way but following the type of calculation used in .22) and

(123), we obtain for k 4

K= 47 1 + B1 ] (149)

Thus

Q3)Q(bk4 4 )_(150

so that

"4 (b 3 (15_a)

Therefore for the dimensions used in k = 3

+4 = 1.6 days.

[ ~INERTIA, WEIGHT AND ORBIT LIFE

[ For purposes of shell design with orbiting about the carth, we are

interested not only in eddy current decay but a host of other effects. Here

we will concentrate additionally only on orbit lifetime as determined by

. 46



aerodynamic drag. * Also the weight of the object is of interest as well as its

size. For radar applications a conducting object is assumed and so eddy

current decays will also be considered in the design.

The model considered will be as before wth the cylinder shape tumbling

so that the angular velocity is normal to H, but now with the orbiting motion

experiencing the effects of drag. The choice of inertia and weight is

coupled into both the eddy current and orbit drag considerations.

For the purposes at hand we take

T = ; k = 3 or 4
k hH (152)

where

Kk is a constant depending on body geometry

Ik  is the tumbling moment of inertia

h is the shell thickness

Now, as noted previously, if I is not arbitrarily specified

K33 K 4 14 (153)

so that only one set of eddy current calculations need be done for the case

k = 3 or k = 4 cylinders whenever I is not imposed.

Of course for thin shells, I can be shown proportional to h. For

example, from Equation (149)

*For aerodynamic drag effects on motion about the center of mass, see

Reference (19).
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4 = y'rh + 2b + 32b + -WI (154)

for h << a. Thus - is independent of h (with I not imposed).

A useful value of T for orbit applications might be about 1. 7 years

since this would result in 95 percent reduction in co in about 5 years.

If we assume that orthogonality of H" and w is unlikely, and take H

reduced to-. 0. 8H (H2 to - 0.64 H2) and if we impose a fixed value of
2

1 75 kg-m , then for I = 3m, b = 0. 625m, H = 0. 3 oersted,

h = 0.01m, as for T3 we get with k = 2.4

S 1
74 = k T64 - 1.05 days

k (.64) 3

say, for example

T4 = 1.2 days.

The thickness then required to give T4 = 1. 7 years with all other

factors remaining the same, becomes

h4  0. 001.8 cm -e 0.75 mils.

Now for most operational radar applications, the radar skin depth

e

6 __ 0 004 cm = 6.(2lr \ 1/2 -min,

radarj

so that

h = 4 .5 6min

where we desire
h 3 6
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Considering that the all-aluminum shell determines the tumbling

inertia itself (i. e., I is not imposed) then for h << b

T = T4 = constant- 1.8 weeks (155)

for H = 0. 3 oersted, P = 3m, b = 0. 625m.

If the length had been decreased, then for example T4 would decrease

slightly to about 1. 3 weeks since the torque would remain about the same

(see page 40) while the inertia would decrease. For the length-to-radius

ratios considered here, the decrease in torque is less than that in inertia

so that T decreases.

In orde, to realize

T3 = T4 = 1. 7 years

we rr'duce the torque by taking small h 0. 002 cm and increase I by

fo-ming a non-conducting backing (say plastic) inside the conducting skin.

Using calculations similar to those for describing I, we find for the

mass, M

= -Yi 71-b a 2) 2

M [ ( b2 a2)2 f+ (b~ a 3)]
4 3 (156)

Then the weight, W, in pounds with M in kg. is

W = 2.2M (157)

For thin shells

I = K h (158)m

with Km constant for a fixed shape and size.
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To illustrate a design, we find using a plastic with specific gravity

= 1. 5, and h (aluminum) = 0. 002 cm,

h (plastic) = 1/2 cm: I (alum + plastic) = 154 kg-m2

W (alum + plastic) = 189 lbs.

T =-- 3.5 years

2
h (plastic) = 1/4 cm: I (alum + plastic) = 76 kg-m

W (alum + plastic) = 96 lbs.

- - 1.7 years

Thus by striving to minimize torque by decreasing the conducting

thickness while increasing the inertia with a plastic backing (without causing

a large weight increase) reasonable eddy current time constants for rotating

shells can be achieved.

It may also be men',ioned that aerodynamic considerations, [19]

essentially independent of altitude, affecting the rotating motion require

I (tumble) > 4. 5 in order that the stable mode be tumbling.
I (spin)

With the spin inertia calculated as

13 (spin) = -y r (b4  a4 )-3 (159)

thIboe1 (spin) y (b~ - a4) 1 + 8- (b .5)(10
the above design yields

I (tumble) _ 5 > 45
I (spin) -
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Since we have been varying weight, inertia and surface areas, we have

been changing the orbit lifetime due to aerodynamic drag.

Omitting the details of the computation and considering eccentric

orbits at 300 nautical miles perigee we find, using decay data, 20] for

= 0 (circular orbit)

W = 200# gives orbit life 2 189 days

W = 300# gives orbit life m 280 days

and for E = 0. 05 (apogee = 694 nautical miles)

W = 200 gives orbit life L 1658 days

W = 300# gives orbit life n5 2430 days

At a circular orbit of 450 nautical miles

W = 200# gives orbit life _ 2160 days

W = 300 gin-es orbit life 2- 3705 days

In these calculations, b = 0. 625 in, R = 3m, an average inflight

projected area for the hemisphere capped cylinder of 32. 6 ft2 and a
C = 2.2 were used.

D

It turns out that, at the 450-nautical mile orbit, an orbit lifetime about

twice as long as the eddy current time constant lifetime is achieved.

5
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magnetic expressions leading to an evaluation of torque are given using various

approaches with comparisons for the spherical shell. Application of these

techniques to cylindrical shells with flat and hemisphere shell ends is described.

The torques both slow and alter the direction of the rotating motion, and the

resultant decay time constants can be in the order of days. Factors affecting

this decay time and influencing shell design are examined.II
Ii

D D 3 Unclassified
DD 1473



Fg

Unclassified
&.C'¢uf t 'st ft'al

E1 LINK A LINK D LIN -

KEY WOROS RLC W
ROE WT ROLF WT ROt I W

Eddy Current
Electromagnetic Drag
Orbit Decay
Rotating Shells I
Satellite Decay

r

LI 1

Unclassified

secuv~v lasificlle


